Background for selecting LandXML as the preferred format for Infra in Finland

Nordic openINFRA Workshop in Oslo focusing on LandXML
7.6.2012

Content
• History – steps
• Pre-study
• Inframodel
• Inframodel2
• Results
• Why LandXML
• Why extensions
• Experiences

JUHA LIUKAS 7.6.2012
Inframodel (IM) history

BACKGROUND FOR SELECTING LANDXML

LandXML v1.0
17.7.2002

LandXML v1.1
21.7.2006

LandXML v1.2
15.8.2008

Pre-study

Inframodel

Inframodel 2

IM v1.0
26.3.2006

Road Admin.
Inframodel guideline
27.10.2007

Update

IM v1.2
20.3.2010

InfraFINBIM

5.6.2012
Infra Technology Programme 2001-2006 - Pre-study

- SKOL (The Finnish Association of Consulting Firms) / SITO 2001
- Current situation – standardization projects – development
- De facto formats in Finland
- OGC, OpenGIS, STANLI, GEOSIS, IFC, GDF, CIRC, OSYRIS, OKSTRA, OpenDesign...
- LandXML?

- Significant benefits from the harmonization of data transfer
- An common infra product data model big effort
- Best tool for infrastructure design?
Infra-related standards – general information map

Source and reference data

- OGC, ISO19100 series standards
 - Basic methods and formats (services, GML)
 - Catalogue information
 - Metadata

- KuntaGML/KRYSP
 (Finnish adaptation of GML for cities and municipalities)
 - Land survey, maps
 - Town and city plans

- INSPIRE

- National Finnish Infra-format
 - Soil investigation information

Design objects, structures

- LandXML
 - Civil engineering data
 - Infra structures
 - Networks

- Inframodel
 (Finnish adaptation of LandXML)
 - Transport networks
 - Roads and streets
 - Railways
 - Waterways
 - Areal structures
 - Water supply and sewerage
 - Header information, base information

- IFC / Bridge extension
 - Bridge structures
 - Buildings
 - Spaces
 - Structures
 - HVAC and mechanical design
 - BOM
 - Cost
 - Scheduling

buildingSMART / IFC Connected structures
Inframodel

- Development of data exchange between softwares in infra design
- Actors VTT, Sito, Tekla, Viasys(Vianova)

- Harmonization study
 - Map information
 - Soil investigations
 - Terrain and subsoil model
- LandXML 1.0 requirement specifications and feasibly study
 - Metadata
 - Geometry, pipenetworks
 - Road / railway model
Inframodel - results

- Harmonization
 - Infra-format for soil investigations
 - Some other guidelines

- LandXML recommended to the data exchange format
 - Fullfill partly the demands
 - Possibility to expand (feature)

- Postpone the start of the common product data model

• “A specialized XML data file format containing civil engineering and survey measurement data commonly used in the Land Development and Transportation Industries”
• An existing, worldwide, open organization
• A non-proprietary data standard
• Driven by an industry consortium of partners (Autodesk, Bentley, Trimble, Topcon, Leica…)
• February 2006: 35 countries and 495 representatives from 400 member companies/government agencies
• Active development (www.LandXML.org)
• XML based
• Possibility to expand
• Possibility to influence?
Inframodel2 - goals

- To improve data exchange between design softwares
- To bring LandXML-transfer format in the use
- Open documentation of Finnish practice
- Implementations in three design softwares: Sito/CityCad, Tekla/Civil, Vianova/Novapoint
- A plan for the maintaining and further development
- Common requirements of design
- Definitions by Sito, Tekla, Vianova; documentation by VTT
- Total cost 600 000 € (public/private 50/50% & Tekes)
2.3 Triangular mesh surface

Surfaces are described as triangular meshes. Each surface is defined in terms of boundaries, exterior features and holes.

The triangular mesh is defined in three parts: first by describing the vertices of the triangular faces, then individual faces and a assigned individual names within the same <Surface> element. The mesh description is done by referring to the names of the

Surface mesh

The surface is delimited by the outermost edges of the mesh.

Triangle vertices + Faces are defined

The surface type surftype is set to "TIN" when describing a triangular mesh. The precision of the mesh model depends on the area2DSurf, 3D surface area area3DSurf and the elevation maximum elevMax and elevation minimum elevMin.

Attributes of the <Definition> header:

- surftype: surface type (TIN, grid, etc.)
- area2DSurf: 2D surface area in surface area units, e.g. [2450.510000]
- area3DSurf: 3D surface area in surface area units, e.g. [2450.510000]
- elevMax: elevation maximum elevation, e.g. [64.372000]
- elevMin: elevation minimum elevation, e.g. [56.4310000]
Inframodel – why extensions?

- Mechanism provide by LandXML (Feature)
- Type coding system and type coding
- Plan data
 - Phase, subproject
- Stringline model
 - Describing construction layers
- Crosssection parameters
 - Between design - design
- Pipenetworks: struct and pipe properties
After Inframodel2

- Piloting project
- Inframodel guidelines
- Upgrade to LandXL 1.2 (documentation)

- InfraTM & InfraFINBIM
 - InfraBIM modelling guidelines
 - InfraBIM classifications and coding systems
 - New steps in BIM activation, pilot projects
 - Inframodel3 (LandXML1.2 etc.)
 - buildingSmart
Experiences

• Benefits
 - Metadata, pipenetworks, surfaces
 - Road model from design to construction
 - Co-operation between different organizations

• Challenges
 - Road model from design to design
 - LandXML <> Inframodel extents (international / national)
 - Active use is the best way to develop
 - Organizing the further development and maintenance
 - Need for InfraBIM guidelines / classification and coding systems
Thank You!
Comments? Questions?

Pre-study Inframodell Inframodell 2 IM v1.0 26.3.2006 Road Admin. Inframodell guideline 27.10.2007 IM v1.2 20.3.2010

InfraFINBIM